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TECHENICAL MEMORANDUM 1351

ON THE DESIGN OF AIRFOILS IN WHICH THE TRANSTTION
OF THE BOUNDARY IAYER IS DETAYED™

By Itiro Tani
INTRODUCTION - LAMINAR-FIOW AIRFOQOILS

l. In high speed £light conditions, the drag of an airfoil is
almost exclusively due to skin friction. Therefore, if further reduc-
tion in dreg is desired, it 1s necessary to delay as much as possible
the transition from laminasr to turbulent flow in the boundary layer along
the surface, thus decreasing the extent of the turbulent boundery layer
which gives considerable gkin friction. As the factors that may affect
the transition, we will consider the stream turbulence, the surface
roughness, the surface pressure distribution, and so on. In actual
Tlight condlitions, however, the effect of turbulence seems toc be unex-
pectedly small, so that, so far as smooth surfaces are concerned, there
remeins only the shape of the airfoll sectlon In relation to pressure
distribution as the most important factor affecting transition. We call
a lasminar-flow airfoll that alrfoil in which the shape of the section
is suitably designed so as to delay the transition of the boundary
layer flow,. :

2. It is evident that the laminar separation of the boundary layer
mey cguse the transition, as willl be mentioned in the appendsnt part of
the paper, paragraphs 35-40. We cannot expect, therefore, to maintain
laminar flow beyond the separation point. Summarizing the results of
flight experiments on airfoils hitherto made (refs. 8 to 12), we have
the concluslion that the observed transition coincldes approximastely with
the calculated laminsr separation point at small Reynolds numbers, while
it moves upstream toward the minimum pressure point as the Reynolds
number increases. However, no example has ever yet been observed in
which the transition moves shead of the minimum pressure point. We
therefore arrive at the supposition that the leminar-flow airfoil may be
most simply realized by designing the airfoil in which the minimum pres-
sure occurs well downstream.

*"KyBKaiso no Sen'i o okuraseru Yokugata nl tulte.' Report of the
Aeronautical Research Institute, Tokyo Imperial University, No. 250
(vol. 19, no. 1), Jan, 1943,
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DESIGN OF SYMMETRICAL AIRFOILS IN WHICH THE MINIMUM -

PRESSURE OCCURS DOWNSTREAM

3. Following Professor Moriye (ref. 13), we write the coordinate
along the chord in the form x = % (1 + cos §), and assign x = O,
€ = x to the leading edge, and x =1, § = 0 +to the trailing edge.

Expressing the ordinate of the mean camber line by M = E an cos nk,
0

and the half-thickness measured normsl to the chord by T = E by sinmnf. l:

the pressure distribution around the airfoil in the two-dimensional
potential flow ia given by

cos a ;%si'n§+Znan (1 - cos nt) gin né
. T

Z
1
+ 8in o -%(l-cos E);E:__nansinn§ Ez_tnbncosn} .

R___.l_L'_'
q

)1; sin® & + {; i ne, sin nf + Z nb, cos né
1 1

_-F + l-x +
cos agl Z fA. + eBg b + 8in aq I " -(fAs + eBc)

L

1+(fs_eB)

lThe ordinates of the upper and lower surfaces are given by M + T
and M - T, respectlvely. .

»
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where a 1is the sngle of attack, p 1is the pressure acting on the alr-
foil surface, measured from the static pressure of the undlsturbed strean,
and q 1s the dynamic pressure of the undisturbed stream. We assume that

the trailing edge is sharp, so that i nb, = 0. We limit the range of
l .

the varisbles E between O and =, and assign the upper and lower
parts of the double sign for the upper and lower surfaces, respectively.
Writing f for the maximm value of M (the maximum camber) and e for
the maximm value of 2T (the maximum thickness), we put

Z‘” 1 - cos n& Z’” " gin nt aM
fA = "2 n. fA = —2 na ——— D2 wa  Sulm—
¢ i “n gln & B T n gin & dx
= sin né i’: cos nt ar
eBg = 2 nby, ——— eB, = 2 b, —— = . —
© ; sin & _ ¢ 3 O gint | ax

The 1ift coefficlent is given by

CL=2n{sina-221 na, cos a

We consider first only the thickness of the airfoil (the cenmber of
the center line will be considered in the next section, paragraphs 8
to 11). Namely, we consider the. eymmetrical airfoil section set at zero
angle of attack, with a view to obtaining the minimum pressure well
downstream. '

Lk, We adopt as the typical example of the commonly used symmetrical
airfolls the NACA symmetrical airfoil (ref. 14)

T=e {1.&845& - 0.6300x - 1.7580%° + 1.h215%3 - 0.5075::1*}

The maximum thickness is located at x = 0.3, the leading-edge radius is
l.le2, and the traliling-edge slope -(dT/d.x) x=1 is l.17e. The pressure
distribution for the case e = 0.1 is shown in figure 1. The minimum

pressure is located at x = 0.1, and the laminar separation point,
determined by the spproximate method due to the author (refs. 15 and 16),
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at x = 0.61. If the transition point of the boundery layer would not
move upstream beyond the laminar separation point, we might expect to
maintein a laminar boundary layer for more than half the surface of the
alrfoll, The flight experiments hitherto mede, however, appear to give
negetive evidence for such a conjecture. )

5. Now, in order to shift the minimum pressure backward, it is
required to shift the position of maximum thickness (x = m) backward.

For designing such airfolls, we represent the shapes of parts before
and after the maximum thickness by two algebraic expressions. For the

forward half (0 S xS m)

T =c¢e {Z¥E£;'+ byx + h2x2

while for the rear half (m S x $ 1)

T = e'{é.OI +a3(1 - x} + dp(1 - x)° + dz(1 - X)%}

where
2 - 3{Em VZom - 1
bt b2t a
om
147 - 247(1 - m) d4(1 - m) - 0.98
dp = 4 = 3
(1 - m)? (1 - m)

and we assfgn arbitrary values for three parameters, m, h (= leading-
edge radius & ¢?), and dp (= trailing-edge slope & e). Although the
method. has the drawback that the two expressilons glve different values

of d?T/dx2 at x = m, vhere dT/dx becomes zero, we mevertheless
adopt 1t because we are in a posltlon to vary the forward amnd rearwerd
parts most simply and independently.

6. First, we fix the forward half with m = 0.5 and h = 0.5, and
vary the rear half by glving d; the values 1.7, 2.0, 2.5, and 3.0,

respectively. The shape of the section and the pressure distribution
for e = 0.1 are shown in figure 2. We find from this result that, as
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d; increases, the minimum pressure point moves backward and the gradient

of pressure rise following the minimum pressure steepens. We also find
that the pressure distribution in the neighborhood of the minimum pres-
sure exhibits a wavy indentation when the value of d; 1is too emall or

too large, and that there exists a certain value of d; for which the

pressure distribution is flat and smooth. Such & value of dj 1s asbout
2.5 in this case. We therefore fix the rear half with d; = 2.5, and

vary the forward half by giving h +the values 0.35, 0.50, 0.70, and
1,05, respectively. The shape of the gpection and the pressure distri-
bution for e = 0.1 are shown in figure 3. From this comparison, we
find that the negatlve pressure bump lmmedliately behind the leading
edge decreases ags h decreases, and that the maximm permissible value
of h 1is sbout 0,7.

The effect of thickness is shown in figure’l, in which curves of
pressure distribution are given for different values of e, 0.06, 0,10,
and 0.14, but for a filxed set of parameters, m = 0.5, h = 0.5, and
dy = 2.5. It is seen that the characteristics of the pressure distri-
bution do not materially change with thickness. There is, however, a
slight change in the pressure distribution, the maximum permiseible
value for h slightly incressing as the thickness increages.

To see the effect of the position of maximum thickness, we give m
values ranging from 0.35 to 0.60, varying at the same time values of d;
and h so that the pressure distribution becomes £lat and smooth. The
result of calculation 1s given in figure 5, which shows & considerable
change in the position of minimum pressure. The change is not purely
due to the effect of m, but it is at any rate to be noticed that the
value of m less than 0.4 is not sufficient for shifting backward the
minimum .pressure, while increasing the value of m beyond 0.5 ie of no
advantage, since the backward shift is then almost saturated, only the
adverse pressure gradient belng increased.

T. From the resulits of calculatlon, we thus arrive at the conclusion
that m must be between O.4 and 0.5 end h must be less than 0.7 in order
that the minimum pressure occurs well downstream, Smaller values of h
are desireble, but, on the other hand, we should like to make h as
large as possible, because a large value of h will be advantageous in
increasing the maximum 1ift coefficient and in preventing the inception
of adverse pressure gradient when the angle of attack is slightly changed.
Even if we give h +the maximum permissible value 0.7, the leading-edge
radius amounts to only 60 percent of that for the conventional NACA sym~
metrical airfoil of the same thickness. In order to increase the leading-
edge radius, it is required to increase the thickness, which in turn is
accompanied by an increase In adverse pressure gradient following the
minimum pressure. The adverse pressure gradilent ghould be kept within a
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certain limit, so that it becomes necessary to meke a compromise between
conflicting requirements. Thus, we are no longer ip a posiltion to
require the farthest possible rearward location of the minimum pres-
gsure. We should also use a value of dj which is somewhat smaller

then that mentioned previously.

Taking these requirements into account, we finally arrive at the
design of a geries of symmetrical airfoll sectlons, the parameters of
which are glven in the following table:

Position of
Section| m | h dy ming:“’;m Sreosure
I 0.500 [0.35} 2.384 0.63
J .500 1| .54 1.800 .55
X L4751 56| 1.575 .51
L A0 ! .58] 1,400 A7
M L4001 .62] 1.1 .37
N 350 | .66} 1.000 24

Although section I is the most ideal for delaying the transition, in
practice, its extraordinsrily sharp nose and blunt tall are drawbacks.,

On the other hand, sectlon N is too much compromised.. Sectlons K or L
seem to be suitable as laminar-flow alrfoils for practical use. The
ordingtes of these six sections are glven in table 1, while the auxiliary
functions By and B, associated with the pressure distribution (see

parsgraph 3) are given in tables 2 and 3, respectively. The shapes of
the airfoll sections and the pressure distribution for e = 0.1 are
shown in figure 6.

DESIGN Of MEAN CAMBER LINE SUITABLE FOR LAMINAR-FLOW AIRFOIIS

8. A symmetrical alrfoil set at zero angle of attack has no 1lift.
In order to obtain lift, the center line of the symmetrical airfoll must
be curved with a sultable camber, Since the effects of thickness and
camber are nearly additive with regard to the pressure distribution, the
mesn camber line which mainteins the nature of the pressure distribution
of the symmetrical airfoil will be such that it shall give a uniform dis-
tribution of pressure difference when the thickness is removed. Evidently,
the center of pressure is then located at x = 0.5, so that such a camber
line has the drawback that the travel of center of pressure is consider-
able. To reduce the travel of center of pressure, the uniformity of pres-
sure difference should be satisfied only in the forward part of the chord.
From the standpoint of designing the laminar-flow airfoll, however, it isg
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only required that the distribution of pressure difference is uniform
from the leading edge to that point corresponding to the minimum pres-
gsure of the symmetrical airfoil.

9. When the angle of attack o« 1is small, the expresslon for pres-
sure distribution given in paragraph 3 may be put into the form

Bl + QBS) : (mc . 2 - a.) - (286 2 eBc);‘r

2
1+ (2Ag * eBc)

=1 =

Q v

Since the effect of the term (fAs t eB.)} is very small, the quantity

1l -x
X

G = fA, + a

is required to be constant in order that the camber line ghall not change
the nature of the pressure distribution of the symmetrical section. The
range of constancy is at least up to the position of minlmum pressure of
the symmetrical section. Putting cos § = u = 2x - 1, and considering
for simplicity the case when the minimum pressure is located at u =0,
we prescribe that

[}
"

constant = Gg for 0$x50.5, -15uso

o)
W

Go(1 - u?)m, mzo0 for 0.55x51, 0Sus1

See figure 7. Moreover, since

= l-cospt 1-cosé
G = -2 E n +
1 °n sin § gin § *

a cannot be arbitrary, but must be so chosen that the right gide of the
equation does not become infinite at the leadlng edge, € =x, It is
given by o
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where (') denotes that only odd integers should be taken for n. This
is the so-called ideal asngle of attack due to Theodorsen (ref. 17).
Using the assumption of the thin wing theory, we neglect the terms eBg

and (fAs * eBc). We then have

n/2 :
Cr, = 2(1 + oy)fG O = L/(; sin®M+lt gt

1+ (1+may

Cmo = -
(1 + m)(1 + op)

22

c
a=2 E:: na, + EE
1 N

where Cpg 1s the moment coefficlent about the leading edge (positive
when nose up) at Cp = O, Although m = O corresponds to the case of
meking G uniform up to the trailing edge, it seems to be ilmpossible

to realize a finite pressure difference at the trailing edge. Moreover,
the quantity ‘CmO/CL (which represents the degree of center of pres-

sure travel) is as large as 0.25 in this case. If m > 0, G wvanishes
at the tralling edge, and ‘Cmo/CL decreases a8 m Increases, tending

to 0 &8s m approaches w. m = «» corregponds to the case when G =0
in the resr half of the chord. Increasing the value of m, however,
steepens the pressure gradient, so the value of m from 3 to 5 seems to
be sdequate. -
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. Now, since

£o c c
st:Ln§=EZ-_-nancosn§-(Einan+2—l')cos§+éE
1

the slope of the camber line having the prescribed distribution of G
is given by

£1g

o0

in né 1 pt = E*
E nans_—='_f 2 5 na, cos nt! 2 -
T gin & JO 1 cos & - cos &'

]
|
=
+
&
1.2}

L/(;l(l-uz)m-(l“vz)mdv +22nan

u -V l .

The ordinate of the camber line ig obtained by the integration

o dx

[=2]

Z ne, may be determined by the condition thet M =0 at x =1, We
1

call D, the camber line thus determined. The equations for camber
lines for m =0, 1, 3, 5, and =, namely Do, D1, D3, Ds, and D,
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are given below, their important characteristics being summarized in the

table. It is to be moted that £ 1s the maximum value of M, ¢ is .
the sbsolute value of the zero-lift angle, and ¢ .and a are measured

in radisns. '

m| «fCr, G/CL £/C1, "‘CmO/CL
010 0.1592 | 0.0552 | 0.2500
1{ .0380 | .1211| .0T11 . 1750
3] .0609 | .0983| .0790 .1213
51 .0703 | .0888} .0816 .0979
w| .1103} .0488) .087h | ©

Dg: %=1--2-1-(1;g—§-{(1-u) log (1 - uw + (1 +w log(l+u)}' ,

Dl:E£M=%(5+u) 1052-%‘(1+u) log (1 + u) +-;-u3 log ju} -
%(l-u)2(2+1_1) log (1 -~ w) +%(l-u2)
D3: &-EM=-}-(51+19u)1032-§2(l+ﬁ) log (1 + u) + -
L 51 51

Elf u3(35. - 21 + 5u1’) log lu| -

-5%'_- (1 - u)h'(lG + 20u + 20u2 + 5u3) log (1 - u) +

6_11-2- (1 -~ v@) (176 - 8lu - 172u2 + 30u3 + gOuh)
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Dyt by o (9&9 + 437u) log 2 - —21 (1 + 1) log (1L +uw + .
Cr, 91l- N -

§%§-u3(ll55 - 1386u? + 990u# - 385u6 + 63u8) log |ul -

§E— (1 - wO6(256 + B43u + 1218w + 938u3 + 378t

6310 1 - —L (1.? - 28 - 6608
3w2) log (1 - u) + 365 (1 - w?) (35072 ' 535u o 8u +

31680u3 + 68792u4 - 17430u” - 36120u5 + 3780uT + 7560u8)

D

oo

¥ .{(l +u) log2 - (L +u) log (2 +u) +u log lul}
£ log 3

Shapes of these camber lines are shown in figure 7, the ordinates
of them are given in table 4, and the auxiliary functions A. and Ag
(see paragraph 3) and the pressure difference distribution G are given
in tebles 5, 6, and 7, respectively. ‘

10. The calculation made previously is only approximate, neglecting
the thickness. It is therefore desirable to check the result by actually
calculating the pressure distribution for the specified angle of attack
taking both camber and thickness into accouwnt. As an example, we con-
gtruct an airfoil by applying the thickness form K with e = 0.15 por-
mel to the chord around the camber line Ds with £ = 0.02 (the
resulting sirfoil is designated as D5K - 2015). We calculate the pres-
sure distribution by the formula of paragraph 3 for the optimum design
condition a = 0.99° and Cp, = 0.245. The result is shown in figure 8.

The nature of the pressure distribution remsins similar to that of the
symmetrical airfoil, so we may coneider that the approximate determina- R
tion neglecting thickness gives results sufficiently accurate for practi-

cal purposes. -

11. In designing the camber line _Dp, we have assumed for.;impliéiﬁy

that the pressure difference G 1s comstant for u <€ O. This corresponds
to the case when the symmetrical airfoil has its minimum pressure in the
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neighborhood of u = O. Therefore, the canmber line Dy 1s adequate. to
be combined with the symmetrical section J or K. If, however, the
symmetrical section 1ls adopted in which the minimum pressure is located
further upstream, it is not only not neocessary to maintain G constant
up to u = 0, but also of disadvantage because 1t makes it difflicult to
reduce the value of ‘CmO/CL- -

To reduce the range over which G should be maintained constant,
we may proceed in the following way. Assuming for instance that G

should be constent from u= -1 to u= - %, end using a new variable

uy = % (1 + 3u), we prescribe that

¢ = Gg for -1SuS-3 -2SuTo
e o] (1 2)3 lc.. <« < <
= O - ul fOI‘ - "3—= u = l, O - ul = l

The calculation mey be performed similarly to the case of Dp. The _
resulting camber line is designated as F3. The camber line lying in
the middle between F3 and D5 ip also designed, and designated as Ey.

Thelr Important characteristics are given in the following table together
with those of D5. Other numerical dats for thege camber lines are given

in tables 4 to 7.

Camber line | of/Cy, | ¢/C;, | £/Cr | -Cmo/CL

D5 ~10.0703 | 0.0888 | 0.0816 | 0.0979
E) 0752 | .084%0 | .0813 .0859
F3 - 076k | 0827 .0795|( .0833

Since the camber lines E) and F3 ensble us to maintain G con-
stant up to the point x = 0,42 and x = 0.33, respectively, they are
adequate to be combined with the symmetrical sections I and M, respec-
tively. The pressure distribution is shown in figure 10 for the airfoil
obtained by applying the thickness form M with e = 0.15 around the
camber line F3 with f = 0.02. The optimum design condition corresponds

to o = 1.10° and Cp, = 0.252.
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EXPERTMENTS ON LAMINAR-FLOW ATIRFOIIS

12. In order to ascertain whether it is possible to prevent the
forward movement of the boundary layer transition by shifting the mini-
mum pressure on the airfoll surface, we have to perform experiments in
a low turbulence wind tumnel or on the actual airplane in flight. When
the Reynolds number 1s not too large, however, we can gtill use a con-
ventional wind tunnel in which the - stream turbulence is relatively small.
So we made at first comparative meassurements on two symmetrical airfoils,
NACA 0010 and L.B. 24 in the 1.5 m wind tumnel of the Aeronautical
Regearch Institute. L.B. 24 is a laminar-flow airfoil of 10 percent
thickness, already shown in figure 3. The theoretical pressure distri-
bution is slso given in figure 11, The minimum pressure is located at

= 0,64, and the laminar separation at x = 0.77. The wind tunnel was
of the lowest turbulence level available for the author, the critical

Reynolds number of a sphere being 3.66 X lO5 and the transition Reymnolds

number of a f£fiat plate 1.05 X 103 (see paragraph 28). In order to raise

the Reynolds number as high as possible, unususlly large models were
used. They were made of laminated mshogany, of highly polished surface,
of 0.8 m span, of 1.2 m chord, and fitted with end plates 1.3 m X 0.6 m,
Since the model was large compared with the size of the tumnel and the
end plates were not sufficlently large, the results for a given airfoil
may not correspond even approximately with those for the same airfoil in
an undisturbed two-dimensional flow. Our object, however, was merely
to ascertaln the relation between pressure distribution and transition,
and it seemed reasonsble to expect that the relation will not be seriously
affected by limitations in the condltions of the experiments. As a matter
of fact, marked difference was found in the calculated and measured dis-
tributions of pressure, the latter of which was measured along the median
section of the model with a static tube of 1 mm diameter (fig. 12).2

This discrepancy, however, is immaterial, since our object was merely to
compare the two airfolls, both of which are affected quite similarly by
experimental limitations.

13. The angle of attack of the model was zero, and the wind speed
was varied from 6 to LO m/s. The local drag of the median section was
determined from wake measurements, that were made in the section 11l cm
behind the trailing edge. Measurements of static and total pressures in
the wake were made, respectively, with a static tube of 2.5 mm external
diameter and a pitot tube with a flattened mouth of 0.65 mm external
depth and 2.6 mm width. The profile drag coefficient Cpy was obtained

2The measured values are those for a Reynolds number of about 2 X 106.
The distribution of pressure changes but little with the Reynolde number.

-
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from the measured pressures by Jones' formula (ref, 18)., Figure 13 3
presents Cpy plotted against Reynplds number R referred to chord

length. For a lower range of R, the drag of L.B. ah is higher than

that of NACA 0010, the reason probably being that a turbulent boundary
layer associlated With the laminar separation 1ls established at a higher
Reynolds number for the former airfoil than for the latter. For a higher
range of R, however, the condition is reversed, L.B. 24 giving a drag

less than half that of NACA 0010 for R higher than 2 X 106. This is
probably due to the fact that the transition may occur much leter for
L.B. 24 than it does for NACA 0010, as algo observed. from the compeari-

gon of wake conditions for the two airfoils (fig. 14).LL

1%, In order to verify the aforementioned suppogition, a pitot tube
with a flattened mouth of external depth 0.9 mm and width 2.7 mm was
placed in contact with the airfoll surface, and the wind speed, and con-~
sequently the Reynolds number R, were determined at which the Indicated
total pressure G¥* divided by the dynamical pressure gq of the undis-
turbed stream beging to rise suddenly. The results are shown in fig-
ure 15. From this figure, the dependence of the transition polnt on
Reynolds number as shown in figure 16 is obtained. At the same Reynolds
pumber, the transition occurs much farther from the leading edge for
L.B. 24 than for NACA 0010. Even at the highest Reynolde number reached,
L.B. 24 heg a trengition as far back se x = 0.80., This is somewhat
beyond the laminar separation point, x = 0.77, which 1s calculated from
the theoretical pressure distribution. However, this 1s not -contradictory,
because the actuasl pressure distribution differs from the theoretical one
in a manner to delay the transition (fig, 12).

15. With further increase in Reynolds number, the transition may
move toward the leading edge, but it seems improbable that the transition
moves forward beyond the minimum pressure. It is highly desirable to
check this polnt also by wind tunnel experiments, but all the wind tunnels
now avallable to the author are of no use for making measurements at
sufficiently high Reynolds numbers, because the transition is prematurely

3In this figure, the.curves L and T represent the drag of &
flat plate when the boundary layer is entirely laminar and entirely
turbulent, respectively. The curves NV and NF represent the drag
of airfoil NACA 000Q messured in the NACA Variable-Density Wind Tunnel
and NACA Full-Scale Wind Tunnel, respectively.

hIn this figure G and p are the total and static pregsures in
the wake, respectively, and Gg 1s the total’ pressure gutside the wake,

all being measured from the static pressure of the undisturbed stream,
¥ 1s the distance across the wake, and *+ is& the chord of the model.
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induced by the turbulence of the stream (see paragraphs 27 to 29). It
seems urgent to bulld a special wind tunnel of low turbulence level.
For the present, however, it is simplest.to rely upon experiments in
actusl flight. Such a hope of the author was fortunately realized by
the specially planned flight experiment, which was performed at the
Navy Aeronasutical Technical Arsenal (ref. 19).

16. The airplane used for the experiment was a biplene; two portions
of the lower wing, each of 1.1 m spen, were covered with the airfoil to _
be tested. The test portions were of chord 2.4t m, made of Japanese Hinoki,
highly polished, and fitted with a partition fence of small height &t
both ends. Two test portions were placed symmetrically, pressure dlstri-
bution and wake messurements belng performed on the starboard portion,
while the boundary layer was observed on the port portion. The airfoil
sectlon was not one of the most appropriate design now considered, because
it was required to put it on the original section of the airplane, and,
moreover, to determine the section before completion of the final design
calculation. It has the following characteristics:

Mean camber line: M = 0,066Tx(1 - x)(1 - x + x2), £ = 0.0125

Thickness distribution: e = 0.12, m = 0,45, h = 0,56, 47 = 1.60

The camber line is similar to Dy of paragraph 9, but there exists a

slight lack of uniformity of G in the neighborhood of leading and
trailing edges. The thickness dlstribution 1s similar to L of para-
graph 7, but the trailing edge slope is somewhat larger than L.

17. Results of flight experiments are summarized in figure 17
and 18. In figure 17, the section 1ift coefficient Cy1, obtained by
integrating the pressure distribution curve, is shown by & broken line
plotted against the Reynolds number R referred to the flight speed
and chord length, and C;, 1s agalin shown by a solid line plotted against

the profile drag coefficient CDO determined from the wake measurements,

In figure 18, the measured pressure distribution is shown in comparison
with the theoretical one (two-dimensional potential flow) having the
same value of Cr.. The transition points estimated from the change in
boundary layer veloclty profiles are also marked. Generally speaking,
the measured pressure distribution agrees fairly well with the theo-
retical one, although a slight difference appears when Cg, Dbecomes
large, An adverse pressure gradlent is found on the lower surface when
Cr, 1is small, thus resulting in the transitlion point being observed
unexpectedly far forward. Such a discrepancy in pressure distribution
as compared with the theoretical one seems to be probably due to the
fact that the span of the test portion was mot sufficiently large. As
a result, the profile drag coefficient CDO has the minimum velue 0.0042
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at about. Crp, = 0.26, which is larger than the value Cr, = 0.18 theo-
retically estimated on the assumption that the transition occurs far

back on both upper and lower surfaces. Therefore, the observed value
of CDO, although much smaller than that of the conventional airfoils,

geems to be stlll somewhat large when compared with the optimum casge.

At any rste, however, no transition was found to occur upstream of the
minimum pressure. It is important to note that such experimental evi-
dence was obtained on an airfoll section in which the minimum pressure

is located further downstream then on the conventional one. Thils finding
will give valuable data to establish a basils for design of the laminar-
flow alrfoils,

ESTIMATION OF THE DRAG OF LAMINAR-FLOW-AIRFOIIS

18. As mentioned previously, the results of flight experiments
seem to support the basis for the design of laminar-flow airfolls,
namely, the possibility of maintaining the boundary layer laminar at
least up to the minimum pressure point. It is interesting, therefore,
to estimate the drag of lamlnar-flow airfoils by assuming a lsminar
boundery layer from the leading edge to the minimum pressure point and
a turbulent boundery layer downstream to the trailing edge.

For the laminar boundary layer, the momentum thickness 1is given by
o O.hhv [® b
0- = u; - ds
0

u15

with a sufficient approximation (ref. 16), where wu; 1s the velocity

outside the boundary layer and s 1sg the distance measured along the
airfoil surface from the forward stagnation point. Writing t for the
chord length and V for the velocity of the undisturbed flow (velocity
of flight), and putting

vt

ul=UV - s = ot R=V

we have the nondimensional expression : -
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6a° _ o,u;f"a (_‘.3.)h do
2 ROy Jo Vs

where the subscript a refers to the point of minimum pressure.
Applying then the solution due to Buri (ref. 20) for a turbulent
boundary lasyer assumed to extend from the minimum pressure point to
the trailing edge, we have the result :

[@5/ b7/ ﬂ% - 0.016er~/* L % 4o

Og a

where the subscript b refers to the trailing edge. The numerical
values originaelly given by Burl are slightly modified s0 as to agree
with measurements when applied to the Flat plate.

According to Squire and Young (ref. 21), the profile drag coeffi-~
clent is given by

Cpy = £ (6 + ez)bub3-2

where the subscripts uw and 1 refer to the upper and lower surfaces,
respectively. The exponent 3.2 of Up has been obtained by assuming
the ratio of displacement and momentum thicknesses equal to 1.k, But the
ratio seems to exceed 1.4k near the trailing edge, so we replace 3.2 by

3.4 with a view to improving the accuracy and at the same time to
simplifying the algebra., Since e

8 C 17/k - o 4/5
20" - (—.EB-L>5/hUa 7%, o.016er7Y" j; P dﬁ
’ 8
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we hsve

Cpy = o.o7hR'1/5 (LuR-B/B- + Tu)h/5 + (LIR-B/B . Tz)h/{l

where

5/8

0,
L=37Ua9/8[/c;aUl‘de

If the velocity distribution uj; = UV is ¢alculated by assuming the

potential flow of an ideal fluld, it is desirable to modify the distri-
bution to teke account of the effect of separation near the trailing
edge. We tentatively modified the distribution of U such that the

Buri parameter I' = (e/u.l)(du.l/ds)(ule/v)l/l‘L at the:trailing edge for

the case when the boundary layer is assumed turbulent from the leading
edge, namely :

2
. I‘=O'0081(£-)f%U)+dc
Ub6 do /i Jo

shall not become smaller then -0.06. In almost all the cases, values
of Up thus modified are found in the range between 0.95 and 1.00.

o }
T=behd0'
On

19. Applying this method of calculation, the profile drag coeffi-
cient CDb is estimated first for a series of -symmetrical airfolls set

at zero angle of attack, The series consists of the six symmetrical
alrfolls, I, J, K, L, M, N, as given in paragraph 7 and the NACA con-

ventional airfoil. Values of Cpy at R =2 x 107 for three different

thicknesses (maximum thickness in terms of chord e =.0.10, 0.15, 0,20)
ere shown in figure 19 plotted agaeinst the position of minimum pressure,
CDO seems to decrease almost linearly as .the minimum Pressure is shifted
backward, the most ideal airfoil I giving a value about half of that of
the NACA conventional airfoil. If it is desired to realize a profile
drag of two-thirds of the conventional airfoil, it will be required to
use the symmetrical airfoil L with the maximum thickness located at

L5 percent chord from the leading edge. )
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Effect of camber is relatively small. If, for instance, the
center line of the symmetrical airfoil X with e = 0,15 1is curved
into the camber line D5 with f = 0.02 (see paragraph 9), the esti-

mated Increase in profile drag at the optimum angle of attack is only
0.0001, For £ = 0,04, it is 0.0003.

Finally, we compare the laminar-flow airfoil with the most exten-
sively used airfoil, NACA 23012, for which the leading-edge redius is
0.0158, and the optimum 1lift coefficient corresponding to the minimum
profile drag coefficient is gbout 0.15. If we consider the symmetrical
airfoil section K (h = 0.56) combined with the camber Iine Dg, it is

necesgsary to use the thickness e = 0.15 1in order to obtain the same
magnitude of leading-edge radius, and the camber £ = 0,012 in order to
realize the optimum lift coefficient 0.15.5 Therefore we construct an
alrfoil by applying the symmetricsl form X with e = 0.15 normal to
the chord around the camber line D5 with f = O. 012. We call it

D=sK - 1215. The angle of attack corresponding to Cr, = 0.15 is 1.56°

for NACA 23012 and 0.60° for DsK - 1215. The pressure distribution for
that condition is shown In figure 20, : S :

We then estimate CDO for the two alrfoils by the method explained

previously. The results are shown by broken lines in figure 21, In
order to check the results, measured values teken from various sources
for the two airfolls and similar airfoils are also plotted in the same
figure by different marks. The mark o refers to the value obtained

by flight experiments on a smooth surface, and e refers to that
obtained by wind tunnel experiments where the stream turbulence has no
effect on transition. The mark + refers to the flight experiment on

& rough surface, while X refers to the wind tunnel experiment where
the stream turbulence causes the trangition to occur prematurely. There-
fore, only o and e are adequate for our present purpose. Drawing
curves through these points and extrapolating to higher Reynolds numbers,
we find that the result sgrees fairly well with the estimgted values.
Therefore, we mey consider that the method of estimating CDO is suffi-

ciently accurate at the Reynolds numbers corresponding to actual flight

JThe calculation developed in paragraphs 8 to 11 refers to the poten-
tial flow of an ldeal fluid, so that it gives the slope of lift_curven_
C _
%—E = 2x. In real fluids, however, the slope of lift curve amounts to
a
only 80 to 90 percent of the theoretical value. If we take this effect
into account, we have to incresse the necessary amowmt of f by 10 to
20 percent in order to realize the given 1lift coefficient. However,
such a slight change in the value of f will scarcely affect the estl-
mation of CDO. '
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conditions. Comparison of two airfoils, laminar-flow and conventional,
also suggests the possibility of 4O percent reduction in profile drag
by using a felrly practical laminar~flow airfoil.

CONSIDERATION OF THE AIRFOIL WITH UNIFORM DISTRIBUTION OF PRESSURE

20. The fact that, so far as flight experiments with smooth wings
sre concerned, the boundary layer transition occurse only in the region
of rising pressure, not only warrants the principle of designing the
laminar-flow airfoll by shifting the minimum pressure backward, but
also suggests the possibllity of delaying the trensition by using an
elrfoll with uniform distribution of pressure. Therefore, in para-
"graphs 21 to 23, the shape of such a symmetrical airfoil is determined
by a method simllar to that used for designing the camber line of laminsr-
flow eirfolls, and the alrfoil was examined by wind tunnel experiments,
In paragraphs 24k to 26, a calculation is made to inquire about the method
of sucking awey the boundary layer over the region of rising pressure in
such a way that the boundary layer veloclty profile shall remain the same
as that for the point of minimum pressure.

21, Consider the symmetrical airfoil set at zero angle of attack.
According to the formula of parsgraph 3, the pressure distribution is
given by

£ siﬁ né 2
1+2 E;: nby,
[: gin &

14+ BZb °°Bn§l

sin ¢

where p 1s the pressure acting on the airfoll surface, measured from
the static pressure of the undisturbed gstream, q 1is the dynamic pres-

sure of the undlsturbed stream, x = 5 (1 + cos &) is the coordinate
along the chord, and the half-thickness of the airfoil is expressed in

the form
oo
T = z;; bn sin né¢
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If the thickness is sufficiently small, the square of

ar 2 cos né
dx 1 sin &

may be neglected, soc that the condition of uniform distribution of pres-
sure is satisfled by putting all the coefficients b,, other than %b;,

equal to zero, nemely, by an elliptic section. In order to take the =~~~
thickness into account approximately, we substitute the value of dT/dx
for the elliptic section into the denominator of the expression for p/q.

Then, writing e for the maximum thickness in terms of the chord, we
get

2
oo
gin £ + 2 ) nby sin nt
D 1
=1-
8in°t + e2cos”t
hence
@
25 nb, sin n€ = - sin & + B\‘,sinEE + e“cos?t
1

1l/2 .
where B is the constant value of (1 - p/q) / . We have therefore
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k14 [ e o [ N
- f 2 > nb, sin nt! Sin ' af
o T

cos £ - cos &'

af

sin§%

I
ajr

T H
f gin &' - B‘J;meg' + e2coglt! sin &' g’
0 cos & - cos &'

Al

2ku'cos'le +

i
]
H

m log (1 +w) (1‘ - kPu + eh - kaue)
(1 - u)(l + K2y 4+ eql - k2u2)

where

u=cos & =2x -1 k’éql-eg--

ra—

Upon integrating we get : : o

T = {%k_ cos™te - %} \‘l - - ' | —-.
B M - k3 (1 + w (l - X%u + edl - k2u2)

— log du

2x -1\ 1 - (l-u)(1+k2u+e‘11-k2u2)

The integral is evaluated by & numerical method, and the value of the
constant B determined from the condition that T = %'-e when u = 0,

The numerical results for three values of e are giver:L_ in tsble 8, T
and dT/dx being expressed in terms of those for the &lliptic section.
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The shapes of the airfoils are shown in figure 22. The shape resgembles
an elliptic section, although it is somewhat fuller at the ends. It will
also be seen that the constant B, as shown in the following table, is

slightly smaller than 1 + e, the maximum value of (1 - p/q)l/2 for the

elliptic section. Since the values of (dT/dx) = (-eul 1 - u?) are not far
different from 1, it seems to be sufficilently asccurate to substitute

the value of dT/dx for the elliptic section into the denominator

of 1 - p/q.

e B
0.1 1.097

.2 1.188

3 1.273

22, The uniform distribution of pressure requires, however, an
infinite pressure gradient at both leading and trailing edges. In order
to see to what degree such a sharp pregssure gradient may be realized in
actual flulds, measurements were made on s model of the airfoll section
with uniform distribution of pressure with e = 0.1 (we call it U.P. 0010)
in the 1.5 m wind tunnel of the Aeronautical Research Instltute., The
model was made of laminated mshogeny, of 0.8 m span, of 0.8 m chord, and
fitted with end plates 1.3 m X 0.6 m., Measurements of pressure distribu-
tion, weke traverse and boundery layer transition were similar to those
already mentioned in paragraphs 12 to 1k,

The pressure distribution along the chord is shown in figure 23
for three values of R, the Reynolds number referred to chord length.
The observed value is somewhat high compared to the theoretical
value %-: -0.,203, the discrepancy probably being due to the excessive
size of the model in proportion to that of the wind tunnel. At any rate,
however, the pressure distribution is nearly uniform. The lack of uni-
formity exists at both edges due to the impossibility of realizing the
infinite pressure gradient. The boundary layer separates nesr the
trailing edge, but the effect of separation becomes small as the Reynolds
number increases, This scale effect seems to be of the same nature as
that responsible for the sudden drop in sphere drag; the boundary layer
separates In & laminar state when the Reynolds number ig low, while it
becomes turbulent before separation when the Reynolds number is high,
thus being able to proceed against a larger pressure gradlent. This is
also seen from the measurements in the wake, where the indentation of the
curve of total pressure distribution 1s shallow and wide for low Reynolds
numbers, while 1t becomes deep and narrow as the Reynolds number increases.
As a result, the profile drag coefficient CDO decreages considerably
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as the Reynolds number increases, as shown in figure 24. Transition to
turbulence was found very near to the tralling edge, occurring downgtream
of x = 0,9 1n the range of measurements. Measured values of the drag
of the model when a& plano wire of 0,5 mm diameter was placed at x = 0.8
and x = 0.9, respectively, are also plotted in the same figure. The .
drop in drag occurs at & lower value of the Reynolds number when the
gurface 1is roughened by the wire,

23, The profile drag coefficient of the airfoil U,P, 0010 is shown
below in comparison with other symmetrical airfoils at R = 2.2 X 106:

NACA 0010 Cpg = 0. 0064 (fig. 13)
L.B., 24 ] 0.0032 (fig. 13)
U.P. 0010 0.0059
U.P. 0010, s wire at x = 0.9 0.00kk

All the airfolls asre of 10 percent thickness. NACA 0010 is & conventional
airfoil, and L.B. 24 is a laminar-flow alrfoll with far back minimum
pregsure, The drag of U,P. 0010 is between that of these two airfoils,
the drag when a wire 1s placed being nearly the mesn of the two. This
result seemg to be interesting in that the drag of an airfoil with a
blunt tall is smaller than commonly considered.

The airfoil with uniform distribution of pressure will also probably
be favorable when uged at high subsonic speeds. Even if the shock wave
occurgs at high subsonic speeds, the increase 1n drag will remain small
when the boundsdry layer does not separate. This expectation was really
verified by the experiment due to Kawada and Kawamura (ref. 22), the
drag of the airfoil U,RP. 0010 being smaller at high Mach numbers as
compared with other alrfoiils,

2k, From the fact that the boundary layer transition occurs only in
the region of rising pressure, we may also expect suction of the boundary
lgyer to delay tramsition. For example, 1f the boundary layer is sucked
inte a slot, there is a well-known sink effect (ref. 23) which relieves
the adverse pressure gradient somewhat upstream of the slot. We may con-
sider an alternative possibllity. That is, we assume that the boundary
layer is laminar in the region of falling pressure, snd that it remains
laminar also in the region of rising pressure provided that the boundary
layer profile is the same as that at the minimum pressure point. We
then ask what suction arrangement must be spplied in order to realize
such a condition.

25, We denote by s +the coordinate measured along the surface,
¥ perpendicular to the surfece, & the boundary layer thickness, u
the veloclty in the boumdary layer, wu; the velocity outside the boundary
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layer, % = -pul(dul/ds) the pressure gradient, and 75 = -p (Bu/ay)

the skin friction at the surface. Assuming the surface (y = 0) 1is made
porous, through which the fluid is sucked with the velocity c¢, we have
the equation of continuilty e —

<]
—e= (a)
W e-_cC L/(; u dy a

and the equation of momentum

3
a o) dp
UW - p — uwe dy = Tg + 5 — (b
! pdsj; 0 de )

where w 1s the velocity of fluld entering the boundary layer through
y = 8. The equation of motion reduces %o

d 2
" @l.) e é_%) ()
Y ly=0 ds e

for y = 0.

Now, the velocity profile in the boundary layer may be approximated
by the Pohlhausen polynomisl

u=uy 2%—-2%+ﬁ (a)

when neither pressure gradient nor suction exists. For this profile we
have -

u
by
PUIW = === T( (£)

(L3
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To simplify the calculation, We assume that the expressions (d), (e),
and (f) still hold when both pressure gradient and suction exist. Then
we have from (b) .

a5 _ 630 v _ 10k 5 W
S (&)
ds 37 wuid 367 uj ds

Integrating we have

m 82 ( n 82) 1260 P®  na
L B ik u ds (h)
1L v 1y =80 37 1
208 ]
where m = 537’ end 8y is the initial positlon of suction, which is

the minimum pressure point in the present case. We have also from (a)

_ 18k dug o (1)
3670 s

If we substitute (d) and (1) intoc both sides of the equation (c}, however,
the left and right sldes become 1.003u1(du1/ds) and ul(dul/dsj, regpec-

tively. This contradiction 1s evidently due to the crude assumption of
uging (f) in spite of the presence of pressure gradient and suction, but -
we may overlook the error because it is small.

26, We apply the calculation to the symmetrical laminar-flow air-
foil of 10 percent maximum thickness, L.B, 24, set at zero angle of
attack. The velocity distribution up/V calculated from the potential

flow of ideal fluids is used,6 the maximum %éloc1ty (minimum pressure)
being located at 64 percent of the chord from the leading edge (50 = 0.65t).

Applying a distributed suction downstresm of the minimum presgsure point
gso as to malntain the veloclty profile in the boundary layer the same as
at this point, we have the boundary layer thickness & and the required

6It 1s assumed that the velocity distribution is not affected by
the suction. Theoretically wu; should be O at the trailing edge, but

the distribution was somewhat modified so as to give uj = 0.85V there.

The effects of these assumptions appear to be too small to affect the
result materially,
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suction velocity c¢ as shown in figure 25. It 1s to be noted that s
is measured along the surface from the leading edge, and R 1is the

Reynolds number based on the chord length t and the velocity of the
undisturbed stresm V. Integrating the area under the curve of c, we

have the total amount of suction 1.3vVR per unit span of the two sur-
faces. If We sssume span = 35m, t=5m, V =200m/s, V=0.15cm?/s,
the total amount of suction emounts to 5.6 m3/s, which will require an
exit area of only 0.028 m© when discharged with the velocity equel to V.
Integration of Tp glves the drag coefficient CDo = 0,0005. Thie value
mey be compared with CDo = 0,0003 for the flat plate with laminar
boundary layer, Cp, = 0.0044 for the flat plate with turbulent boundary

leyer, and Cpg = 0.0025 for L.B. 2k without suction. If the thickness

of the airfoil is doubled (20 percent chord), then the amount of suction
will be nearly doubled; the drag is however almost unchanged.

It should be noticed agaln that the calculation 1s based on the
assumption that no transition occurs 1f the veloclity profile in the
boundary lsyer meintains the form at the minimum pressure. It is the
purpose of the calculation to show that extraordinsrily low profile drag
may be expected with a relatively small amount of suction under such a
condition.

PREMATURE TRANSITION OF BOUNDARY ILAYER -~ EFFECT OF STREAM TURBULENCE

27. Although the transition of the boundary layer occurs only down-
stream of the minlmum pressure, so far as flight experiments on smooth
airfoll surfaces are concerned, there are many examples of wind tunnel
experiments in which the transitlion moves upstream of the minimum pres-
sure. Thls seems to be due to the premature transition caused by the
turbulence in the wind tumnel stream, For example, the transition on
the airfoil L.B. 24 was found only downstream of the minimum pressure
in the range of Reynolds numbers covered by the author's wind tunnel

experiments (the Reynolds number based on chord length up to 3 X 106;
see paragraphs 12 to 14); as a result very low values of the profile drag
coefficient CDO were observed. The same airfoil, however, when tested

with a larger model of 2 m chord in the 2.5 m wind tumnel of Kawasaki
Aircraft Company, Gihu, gave the result as shown in figure 26, in which

CDO increases considerably when the Reynolds number exceeds 5 X lO6

(refs. 24 and 25). There is reason to believe that the increase in drag
is dve to the effect of stream turbulence. The boundary layer observa~ '~
tion at the Kawasakl wind tunnel shows that the transition is found at

50 percent chord (x = 0.5) for the Reynolds number 6 X 106 and moves
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further forward as the Reynolds number increases. fhe-boundary layer

*
velocity profile observed at transition haes a form factor %r = 2.6

(8% and 6 are the displacement and momentum thicknesses of the
boundary layer), which is very near to the value for the case of zero
pressure gradient. This result seems to suggest that the transition is
at least not correleted with the laminar separation (ref. 1).

28. In order to verify this conjecture, it is desirable to show
that the transition in the boundary lsyer along a flat plate occurs
under the same conditlon, because that transltlon may be considered %o
be independent of the laminar separation. Unfortunstely, however, no
flat plate was measured in the Kawasskl wind tunnel. Therefore we pro=-
ceed In a somewhat indirect way. We assume that the degree of stream
turbulence 1s represented by the conventlonal critical Reynolde number
of the sphere, Rp, and the condition of transition due to turbulence

)
represented by the local Reynolds number, Rg = 25—3 at transition on a

flat plate, where uj 18 the velocity outside the boundary layer and

6 1is the momentum thickness of the boundary lsyer. It is generally
accepted that the turbulence in the wind tunnel stream will give =a
fluctuation of pressure gradlent, as a result of which an instantaneous
and intermittent separation will occur. Such an instantaneous and inter-
mittent separation, however, does not necessarily lead to the transition
Into turbulence; for the transition really to occur, it seems probably
necegsary that the Reynolds number Rg which represents the ratio of

inertia pul2 to viscous stress qul/b exceed a certain critical value,

It 1s also expected that the critical value depends on the degree of tur-
bulence; 1t must increase as Rg 1increases, This is really shown by

the experimental data hitherto published, which are given in the following
teble and also by white circles (o) in figure 27. The svailable date are
scanty, especially because the experiment on a flat plate is very diffi-
cult, It was necessary for the author to perform a new experiment (ref. 30)
with a view to adding one point in the range of high Rg.

Re Rg Wind Tunnel Reference
1.40 x 102 |0.21 x 103 | National Bureau of Standards 26
2,75 x 109 | ,70 x 103 | National Bureau of Standards 26
2.20 x 102 | .42 X 103 | N,P.L. Compressed Air Tunnel 27, 28
3,66 X 102 } 1,05 x 103 | Aero. Res. Inst. 1.5 m Tunnel 29, 30
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29. Now, we calculate the value of Rg at transition of the alr-

foil L.B. 2k tested in the Kawasaki wind tumnel, and correlate it with
the critical Reynolds number Rg of that tunnel, We analyze similarly

the other avallsble data, and summarize the result in the following
table. The velues of the form factor & /6 not shown, were all found
in the range from 2.1 to 2.7. We then plot the data also in figure 27
by black circles (#). The black circles are seen to define a single
curve together with the white circles already mentioned. This result
seems to support the supposition that the tramsition under consideration
is mainly caused by the stream turbulence, but not correlated wilth the
Jaminar separation.

Rg . Ry Model Wind Tunnel [Reference
1.85 x 109{0.41 x 103|Symmetricel airfoil|N.P.L. T £t 31, 32
2,10 X 107| ,56 X 103|Airship model M.I.T. 7-:2L— £t 33, 34
3.50 X 109| .95 x 103|Airfoil N-22 NACA Full-Scale| 12, 35
3.65 x 102]1,08 x 103|Airfoil L.B. 2k Kawasaki 2.5 m | 2k, 25

In reference 12 (the third line in the preceding teble), the same
alrfoll was examined both by the full-scale wind tunnel snd by the flight
tests. We calculate the form factor &%/6 from these tests and plot the
values against s/t in figure 28, where t 1is the chord length and s
is the length measured slong the surface from the leading edge. The
value of 8%/60 at transition is 2.6 in the wind tunnel, while it reaches
as high as 3.1 and drops sharply in the flight test. The minimum pres-

sure 1is located at %-: 0.18, and the laminar separation calculated from

the measured dlstributlion of pressure at %-= 0.36.

interesting because the cause of transition is quite different in the two
cases (namely, it is due to the stream turbulence in the wind tunnel,
while it is related to laminar separation in the flight test), although
the positions of transition are almogt the same,

PREMATURE TRANSITION OF BOUNDARY ILAYER - EFFECT OF SURFACE ROUGHNESS

30, Up to this point, we have only considered the case when the sur-
face of the airfoil is smooth. If the surface is rough, however, there
is & posslbllity that the transition may slso be caused prematurely by
surface roughness. So, it 1ls important in practice to estimate the

This exemple 1s very
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approximate order of magnitude of the permissible roughness in the lami-
nar boundary layer. Nothing has been known concerning this problem,
except a mere conjecture or fragmentary data. Schiller (ref. 3 6) sug-
gested that a locsl separation occurs and hence leads to transition

when the Reynolds number kux/V exceeds a certain critlcal value Rgni4,

where Xk i1s the height of projection and ‘u is thé:velocity at the

top of projection. The exact value of R.nyt 1s not known, but it is
not likely to differ much from the critical value of the Reynolds number,
above which vortices are shed from the obstacle of the seme shape as that
of the projection placed in a uniform stream., The experimental result
due to Wieselsberger (ref. 37) shows that such a critical Reynolds number
ig roughly 50 for a circular cylinder. Agsuming that the helght of pro-
Jection k is small, and that the presence of the projection In no way
alters the character of the flow, we have the shearing stress at the

surface Tg = pV(ux/k). Using the so-called friction_yelocity Vy = QTO/P_
Instead of 1w, we have then kv /Y = wkuk/v The pefmissible roughness

1s therefore given by kvy/V = {Ronig, OF, With R.nqy = 50, kv /V = T.
On the other hand, according to Nilkuradse's experiments on roughened
kv

pipes (ref. 38), the critical Reynolds number is —jﬁ = 4, above which

the roughness projections disturb the laminar sublayer of the turbulent
boundary layer and hence increase the pregsure drop. It appears there-
fore that the permissible roughness 1s smaller in the turbulent boundary
layer as compared with the laminar boundary layer. This is confined by
a British flight experiment (ref. 39) on the alrfoil section of 10 feet

chord (Reynolds number 1,8 X 107), because the effect of camouflage paint
of 0,001 inch thickness increased the drag by about 6 percent without
moving the transition forward., At any rate, however, such a estimate is
nothing but mere conjecture, With a view to making the estimate more
definite, we performed wind tumnel experiments, although of small scale,
of qusntitative character (paragraphs 31 to 325

31. A polished aluminum plate, 80 cm 1oﬁg, €0 cm wide, and 3 mm thick,
wes held horizontally in the 1.5 m wind tumnel of the Aeronasutical Regearch
Institute. So that the flow at entry would not be disturbed, the leading
edge of the plate was rounded, and the plate glightly tilted so that the
forward stagnation point was on the same surface ss that where the observa~
tion was made. The tilting, however, was so slight that the static pres-
sure was observed to be practically umiform along the plate. The plate
was roughened by a wire, which was stretched across the flow, in contact
with the plate. The diameters k of the wire were 0,23, 0.4, and 0.7 mm,
regpectively, and the distances x of the wire from the leading edge were
15, 30, 45, and 60 cm, respectively. When the wind speed V was low, the
boundary layer was laminar all along the plate, but from a certain speed
upward, the transition to turbulent flow was observed at that point where
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the wire was placed. Transition was detected by a sudden change in the
value of the total pressure G¥ 1In terms of the dynamic pressure ¢q of
the undisturbed stream, G¥* %being indicated by & small pitot tube with
a flattened mouth of 1 mm external width and 0.3 mm width, which was
placed in contact with the plate at a point 70 cm behind the leading
edge. A sample record of measurements for k = O,4 mm is shown in

figure 29,

When a flat plate is placed along a uniform stream of velocity ¥V,
the Blasius solution (ref. 40) of the laminar boundary layer equation
glves

-3/4
Vi = O. 576V(Y€5)

for a point of distance x from the leading edge. Writing KX for the
critical value of kv*/v, the permissible height of projection k 1is

given by

K _ o (Vx\"3/*
0.576 = = K(VJ%

.

We determine V from the wind speed corresponding to the kink of the
curve as shown in figure 29, plot 0.576(k/x) in a logarithmic scale
against Vx/V, and draw a stralght line of the slope -3/4 through the
points (fig. 30). We thus obtain K = 13, which is far greater than
the value K = 7 estimated previously. ' ’

32, Similar measurements were also performed on an alrfoil section
L.B. 2k, The model was of 0.8 m span, of 1.2 m chord, fitted with end
plates 1.3 m X 0.6 m, and set at zero angle of attack in the same wind
tunnel., Wires of various diameters (k = 0.25, O.4, 0.7 mm) were attached
parallel to the span, In contact with the surface, at 10 percent of the
chord from the leading edge (x = 0.1). Transition was detected by the
sudden change in total pressure as indicated by a pitot tube with a
flattened mouth of 2.7 mm external width and 0.9 mm depth, which was
placed in contact with the surface at 50 percent of the chord from the
leading edge. Results of measurements are shown in figure. 31, where

R = Y}, end t is the chord length.

The frictlon veloclty may be generally expressed in the form

V* = AVR-l/Ll-
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wvhere A 1is a function of s/t (8 1is the length measured along the
surface from the forward stagnation point). We can calculate A by
applying either the Pohlhausen spproximste solution (ref. 41) or the
simplified method due to the author (refs. 15 and 16). The permissible
height of projection is then determined by

X ~3/k
A F=XR

Applying the Pohlhausen method to the theoretically calculsated
distribution of pressure, we get the values of function A, as shown
in figure 32. Since A is 1.23 at the position of wire (x = 0.1),
the value l.23(k/t) 1s plotted in a logerithmic gcale against R In
figure 33, R belng the Reynolds number corresponding to the kink of
the curve as gilven in figure 31. It will be seen that although the
meagured points ere on a stralght line of the slope -3/&, they give
K = 15, which is somewhat higher than the value found for the flat plate.

33. Now we apply the preceding result to the fragmentary data
hitherto known in order to check the adequacy of the estimate. First,
we examine the results of wind tunnel experiment on a symmetrical
laminar-flow alrfoil L.B, 27,7 on which various projections are sttached
at 3 percent of the chord from the lesding edge (x = 0.03). The model
was of 0.8 m span, of 1.2 m chord, and set at zerc angle of attack.

The profile drag was measured by the method similar to that for L.B. 2k
(see paragraphs 12 to 13). The results are shown in figure 34, from
which we find that the rubber tape of 0.07 mm thickness glves no effect
over the range of Reynolds numbers R covered by the experiment, while
the pilsno wire of 0.5 mm diameter gives = completely turbulent frictilon.
The effect of the wire of 0.25 mm diameter beging to appear at

R=1.3%X 106. Inserting the values’ k = 0.,25mm, t =1.2m and

A =1.95 1in the formula A &= kR-3/% we get K = 15.5, which is in

good agreement with the result 1un paragreph 32. The value A = 1.95
was read from figure 32, since the leading edge portion of L.B. 27
almost coincides with that of L.B. 24, Profile drag coefficients of
both zirfoils are also the same over the range of Reynolds numbers
examined.,

34, In connection with the determination of boundary layer transi-
tion on airfoils in the NACA full-scale wind tumnel (ref. 42), an aux-
iliary measurement has been reported, in which the effect was examined’

TL.B. 27-heg a maximum thickness of 10 percent of the chord at
60 percent of the chord from the leading edge. See figure 5 of paragraph 6.
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of rubber tapes attached at 5 percent of the chord (x = 0.05) from the
leading edge of the model. The airfoll sectlon was NACA 0012, the chordv

was T2 inches, aend the Reynolds number R was 4,18 X 106, No effect
was found when the tape was 0.003 inch thick, some effect began to
appear when it was 0,006 inch thick, and the transition moved right to
that position where the tape of 0.009 inch thickness was attached.
Assuming A = 1.6 and K = 15, we estimate from the preceding formule
the value 0.007 inch for the permissible thickness, which seems to agree
well with the observation.

If we further assume that the value A = 1.6 1is also applicable
to the case of the British flight experiment mentioned in paragraph 30,
we £ind 0.00L4 inch for the critical height for transition with

t = 10 feet, R = 1.8 X 107; and K = 15, On the other hand, we esti-

k
mate the permissible limit in turbulent boundary lasyer by —%ﬁ =L,
~which may be written in the form ' L

k_ |2 V)
=

Cf 'LllR

by the relation v*2 = %-cfulg, where wu; is the local wind speed and

ceg is the coefficient of local skin friction. If we agssume u; = 1.2V
and cp = 0.003 (which is equal to the coefficient of mean skin friction

" for a flat plate at R = 1.8 X 107), we obtain 0.0006 inch for the per-

missible roughness thickness. Since the thickness of the camouflage
paint is reported to be gbout 0.001 inch, it may be concluded that the
paint incresses only the friction in turbulent boundary layer, without
affecting, however, the transition to turbulent flow. This is in good
agreement with the experimental results.
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APPENDIX
TRANSITION CAUSED BY LAMINAR SEPARATION

35, As is well-known, the phenomenon of sudden decrease in drag of

a sphere at a certain value of the Reynolds number R = %%- (V 1is the

speed of undisturbed stream and d is the diamefer of sphere) is
explained by supposing that the boundary layer separates while it is
laminar when R 1s low, but it separates after transition to turbulence
wvhen R 1is high, thus resulting in diminishing the so-called dead water
region. Probably the transformetion from laminar separation to turbulent
separation may proceed as follows:

When the laminar boundary layer separates from the surface, the
detached layer remsins elsc laminar at first, but it is so unstable that
it becomes turbulent at a short distance. This transition from laminar
to turbulent flow is considered to occur when the local Reynolds number
based on the width of the detached layer and the velocity outside the
layer exceeds a certain value, so that the transition moves upstream
toward the separation point as R 1increases., When the transition
spproaches sufficiently near the separation polnt, 1t becomes possible
for the detached layer to come back again.to the downstream surface,
because the turbulence produced will drive the flow forward. The layer
reattaches to the surface as a turbulent layer, end accordingly the drag
coefficient begins to decrease. The distance between the separation and
the first turbulent boumdary layer decresses as R iIncreases, and finally
the fully developed turbulent boumndary layer commences Just downstream
of the separation point. The drag coefficient then ceases to decrease.

36. Now, in order that the separated layer reattach to the surface,
uq6
it seems necessary for the local Reynolds number Rg = a%r- at separation

to exceed a certain critical value, where u; i1s the veloclty outside

the boundary layer, and 0@ 1is the momentum thickness of the boundary
layer. Thils may be explained as follows: According to the laminar
boundary layer theory, the separation occurs when the quantity

exceeds a certaln value, suggesting that the pressure rise (dp/ds)e
becomes too large in proportion to the shearing stress at the sur-
face pv(u1/6). Assuming analogically that the separated layer leaves
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the surface when the pressure rise becomes too large in proportion to
the momentum pule, we then find that Rg at the separation point must

exceed a certain critical value in order that the separated layer
reattach to the surfsace.

37. In order to determine the critical value of Ry, we consider

in detail the condition where the coefficient of sphere drasg begins to
decrease. This condition corresponds to the point B of the curve of
figure 35, which represents an idealized variation of the drag coeffi-

cient CD[% drag %-(9V2/2)(Fd2/#I] or the pressure difference coeffi-

cient Ap/q[% difference of pressures at the forward stagnation point

and the point corresponding to the central engle 157.5° = (pVE/Zi] with

the Reynolds number R. Within the range AB, the pressure distribution
around the sphere is approximately independent of R; the typical example
may be found from the experiments due to Fage (ref. h3) Fortunately,
the boundary lsyer calculation has also been performed for that distri-
bution of pressure by Tomotiks and Imail (ref. 44), so that the 1ocal
Reynolds number Ry is given by

Rg = 0.40\R

at the separation point. Although the calculation has originally been

made for a particular Reynolds number, R = 1.57 X lO5 the preceding
relation may be applied for any value of R 1n the range of AB., Putting
the value of R at B, and writing

= . R . - [ .
Recr:l.'b 0.40 B

we have Recrit as the critical value of Rg above which the separated

laminar layer reattaches to the surface. Conventionally the Reynolds
number Rs corresponding to Cp = 0.3 (or Ap/q = 1.22) has been used,
instead of Rp, for representing the degree of stream turbulence, but it
is not so difficult to estimate the value of Rp from the measured curve
of Cp (or Ap/q) against R. For example, we have from the experiments
of towing spheres in the free atmosphere (ref. 35)

= 3.6 X 10° R =3.85x 105 R = 2ho
3.6 X 1 Rx = 3.85 X 10 Recrit 240
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Since these values refer to the case of very low turbulence, it will be
seen that Recrit = 240 represents the highest possible value. It is

R
also to be noted that §§-= 0.9% in this example and that almost the

seme value hags been obtained by the author's experiments on spheres of
various diameters (ref. 29).

38. If the stream turbulence is not low so that Ry i1s less than

3.85 X 10°, then Recrit will be less then 240, Assuming the ratio Rp/Rg
to be constant, we can estimate the corresponding value by

= 240
Recrit

3.85 X 10°

On the other hand,. we can also estimate the value of Rgopyt Girectly

from the boundary layer measurements. The results of the anslysisg for a
sphere ag well as circular and elliptic cylinders are summarized in the
following table, where Recrit 1ls the critical value Rg estimated

from Rp by the preceding formula, Resep is the vaiue of Ry observed

at the separation polnt when the boundary lsyer really separates while
it ie laminar, and Retrans is the value of Ry observed at the calcu-

lated laminar separation point when the boundary layer separates after
transition. The fact that Rocrit lies between Resep and Retrans

seems to suggest the adequacy of the preceding consideration.

Body Be Rocrit | POgep [ ®0trang | Reference
Sphere 2.5 x 102 | 190 160 220 43
Circular cylinder [1.5x 107 | 1%0 140 225 L5
Elliptical cylinder | 2.7 x 102 | 200 160 400 46, 47

39. We now proceed to spply our result to interpreting the effect of
Reynolds number on maximum 1lift of airfoils. For the sngle of attack
near the stall, the flow separates shortly downstream of the leading edge
while the boundary layer is laminar. If the flow fails to reattach to
the surface as a turbulent layer, the maximum 1ift coefficient CLmax of
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the airfoil will be almost lndependent of the Reynolds number R, At
the separation point, similar to the case of a sphere, the relation of
the form .

Ry = kIR

holds, where R = %} "1s the Reynolds number referred to chord length t,8

and k 18 a constant depending on the shape of airfoil and the value of

CLpgx* If R 1is low so that Rg 1s less than the critical value Recrit

then CLmax will be independent of R. Assuming the same value of

for the sphere as for the airfoil, we obtain
crit ’
R - 016 &
k2

for the Reynolds number sbove which CLmax beglne to increase with the

Reynolds number. Therefore, the ratio of the Reynolds number corresponding
to a certain value of CLmax of an airfoil and the critical Reynolds
number of sphere In the same stream, Rp or Rg, becomes independent of

the gtream turbulence. Denoting the values for a reference tumnel with
asterisk, we have

Rr* *
? )

é"lc%"

which In turn meang that the ratio of Reynolds numbers corresponding to
a certain value of Clmax is equal to the ratio of critical Reynolds

numbers of a sphere, This is useful for comparing ‘the values of chax

obtained in two different wind tumnels. Considering the reference condl-
tion to be the free flight in the atmosphere, we find )

*
R* - R x XX
Rg

814 18 to be noted that R 1s referred to t, while Rp and Rg
are referred to 4.
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as the free flight Reynolds number which will give the same velue of
CLmax as that observed in a wind tumnel. This 1s Just what is called

the effective Reynolds number. Strictly speaking, such an argument as
mentioned before should apply only to the Reynolds numbers neer the
critical value, but there are many experimental evidences showing the
usefulness of the concept of effective Reynolds number for most practi-
cal purposes, as far as the commonly used sirfoils snd range of Reynolds
numbers of both wind tunnel and free flight are concerned.

140, Finally, we consider a more quantitative example to show the
adequacy of the preceding argument., In figure 36, CLmax for various

NACA symmetrical sirfoils are plotted against the effective Reynolds
number R¥, the experimental data being taken from the results of the
NACA variable-density wind tunnel (refi: 48). As already mentioned, up °
to a certain value of R¥, chax is almost independent of R¥. This

corresponds to the condition in which the laminer geparation just behind
the leading edge fails to reasttach to the surface, resulting in a con-
slderable dead water region above the airfoll surface. The value of
CLmax is approximately 0.9, irrespective of the thickness; it is almost

equal to the value for a flat plate of vanishing thickness. Theory of
discontinous flow, when applied to the flat plate, seems to glive a 1lift
coefficient close to 0.9 (ref. 49). We idealize, therefore, the experi-
mental curve ag shown by dotted lines in figure 36. Then, the point
where the dotted line meets the line CLmax = 0,9 will be considered to

correspond to Recrit = 240, In order to determine this point, we calcu-

late the value of Rg/vﬁ at the laminar separation point for a 1lift
coefficient Cp = 0.9, and the value of R which gives Rg = 240, We
first calculate the pressure distribution by the formula of paragraph 3
for the two-dimensional potential flow around the airfoll section.
Although the formule may be applied to any arbitrary airfoil section,
we have determined the pressure distributlion only for the airfoil

T = 0.287e4x(1 - x)(5 - kx)

in order to simplify the calculatlion, because no great exactitude is
required in the present problem, x is the coordinate along the chord,
x=0 and x =1 corresponding toc the lesding and trailing edges,
respectively, T 1is the half-thickness, and e is the maximum thick-
ness in terms of chord length. The alrfoil reprepented by the preceding
expression colncides with gufficient accuracy with the true NACA symmetri-

cal airfoil except near the trailing edge. "The value of Rg/fR at the

laminar separstion point was then determined for the calculated pressure
distribution by applying the approximate method due to the author (refs. 15
and 16).
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The critical values R*crit thus calculated are ghown by a solid

line in figure 37, while the corresponding values taken from figure 36
are shown by white circles. The agreement is fairly good, and especially
satisfactory when the thickness of the airfoll is small. In general, the
thickness of the boundary layer near the trailing edge increases as Cr,

increases. If Cy is further increased, however, & laminar separation

suddenly occurs near the leading edge when the thickness is small, while
the trailing-edge turbulent separation moves a considerable extent for-
ward before the leading-edge laminar separation occurs when the thickness
is moderate. Therefore, the assumption of the analysis is more satis-
factorily realized in the case of small thickness, thus bringing the
calculated and observed values in close agreement.

In conclusion, the author wishee to acknowledge his indebtedness
for the asslstance given by Messrs. C. Noda, 5. Mituiei, I. Shinrs,
S. Asaka, R. Hama, and K, Takedsa.

Tranglation by Itiro Tani
University of Tokyo
Tokyo, Japan
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TABLE 1.- ORDINATES FOR SYMMETRICAL SECTION.

NACA TM 1351

VAIUES OF T/e

X I J K L M N

0 0 0

,003 0465 .0563 0574 .0584 0606 L0627
.006 L0661 0793 .0808 .0823 .0854 .0886
.0125 .0962 L1135 .1158 .1180 L1226 1275
.025 .137h .1589 .1620 .1652 L1720 . 179k
05 .1963 .2208 .2252 .2298 .2396 .2508
075 241k .2663 2716 2771 .2892 .3031
.10 .2789 .3029 .3089 .3151 .3288 .34k7
.15 «3394 . 3599 3667 .3738 .3893 LoT2
.20 .3865 L4026 4097 L4170 .1328 4503
.25 L1236 4353 Ahoo Jhop 4638 4788
.30 4523 L4601 L4663 LTl 8Ly .49kg
.35 4737 4783 .4833 .4881 L4962 . 5000
.40 4885 4906 Agho Rkl . 5000 4953
A5 L4972 L4977 .hogh . 5000 .k9h8 L4818
.50 . 5000 . 5000 ook 4931 L0797 - 460k
55 L4970 okl 4873 L4781 4558 L1320
.60 L4871 L4778 L4656 502 Lokl .3975
.65 L1691 4509 A3k2 L4175 .3856 .3578
.70 1418 4139 «3939 .3751 34123 .3138
.75 .4038 .3675 .3455 .3258 .2921 . 2664
.80 .3538 .3121 .2899 .2706 .2393 .2165
.85 .2908 2481 2277 .2105 .1836 .1650
.90 2133 | .1762°| .1598 . 16l L1262 .1128
95 .1201 | .0966 .0870 .0793 .0680 .0609

1.00 .0100 .0100 .0100 .0100 ,0100 .0100
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TABIE 2.- AUXILIARY FUNCTION By ASSOCIATED WITH THE

PRESSURE DISTRIBUTION OF SYMMETRICAL SECTIONS

=2

X I J X L M
0.0125 0.59 1.10 1,13 1.16 1.20
.025 .66 1.06 1.09 1.13 1.20
.05 .75 1,04 1.07 1.11 1.20
.10 .86 1,03 1.07 1,11 1.21
.20 .96 1.03 1.08 1.12 1.22
.30 1.02 1.04 1.09 1.1k 1.23
4o 1.05 1.05 1.10 1.15 1.23
.50 1.08 1.17 1.19 1.19 1.1
.60 1.12 1.18 1.11 1.05 92
.70 1.09 .98 .88 .79 .63
.80 .89 .65 .52 L2 .28
.90 .33 .06 -.03 -.10 ~.18
.95 -.32 -47 -.50 - -.53
975 -.95 -.93 -.91 -.89 -.8L
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TABLE 3.- AUXILIARY FUNCTION B. ASSOCIATED WITH THE

PRESSURE DISTRIBUTION OF SYMMETRICAL SECTIOﬁS

x I J K L M N
0.0125 =4,04 -L. 4o -4,88 -4,90 -5.20 -5.30
.025 -2,86 -3.08 -3.20 -3.22 -3.37 ' | =3.55
.05 ~2,04 -2.08. 2,13 -2.17 -2,28 -2,39
.10 " =1.39 -1.33 -1.35 -1.37 -l.42e -1.48
.20 . -.83 -.7h -.7h - T -.Ts -.70
.30 -, ~-.43 - b1 -.39 -.31 -.21
Lo -.2k4 -.19 -.17 -.12 .00 .18
.50 .00 .00 .11 22 .39 .50
.60 27 Ll .53 .60 .70 .75
.0 .65 .83 .89 .92 .9k .91
.80 1,11 1.19 1.18 1.15 1.09 (. 1.02
.90 1.70 1.52 1.41 1.31 1.16 1,0k
.95 2.03 1,66 1.50 1.36 1.16 1,03
975 2.20 1.73 1,54 1.38 1.15 1,02




NACA TM 1351

TABIE k.- ORDINATES FOR MEAN CAMBER LINES,

VALUES OF M/f

L7

x DO Dl D3 D5 Doo E)+ F3
0 0 0

.003 .0295| .0282| .0292} .0300] .037L| .0313| .0327

.006 .0529]| .0509| .0526| .0540| .0666| .0564| .0589

0125 .0969 .091k4| .0969( .0995( .1220( .1039| .1081
.025 .1687{ .1636| .1695| .17h0| .2119{ .181%k| ,1887
.0%0 286k 2797 .2897] .2973| .3585| .3093| .3212
.075 .3843| .3772] .3907] .h0O6| .478T7| .h161! .4315
.10 L4600| Lhépol 4784 Lhg9o2| .5808( .5084| .5266
.15 .6098| .6045| .6252| .6396| .Tuk3| .6615| .6831
.20 .T219| .7191] .7h2k] .7579| .8638| .7812| .80L41
.25 .8113| .8112] .8353| .8%07| .9451| .8733| .89%2
.30 .8813| .8838 .9067 .9207! .9898| .9387| .9586
.35 .9341| .9384[ .9579| .9688| .9963| .9826{ .9939
4o .9T10| .9758| .9892| .9953| .9589] .9998| .9973
A5 .9928| .9962[1,0000| .9988| .8625| .9872( .9679
.50 1.0000| .9988( .9881| .9761} .6300| .9387! .9085
.55 .9928( .9813| .9h72| .9178| .3885| .8561] .8238
.60 <9710 941k} .8735 .8192| .2646| .Th73| .To0L
.65 .934%1| .8794| .7704| .6903| .1811| .6259| .6056
.T0 .8813| .7878| .6459) .Sh7hk| .1207| .b918| .L48TL
.75 .8113} .6898| .5108| .Lk0o78| .07TR2| .3682| .37P1
.80 . 7219} .5673 .3766 .2847| .0k59| .2590 .2669
.85 .6098| .4305| .2535| .1846| .02k2| ,1686| .1761
.90 U600 .2845| .1493| .1071| .0101| .0973| .1020
.95 2861+ .1366| .0651| .ohk72| .o002k| .0k25| ,ohk2

1.00 0 o} o}
x for M/f = .500 A8 | 450 | 433 ] .333 1 ko6 | .381
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TABLE 5,- AUXILIARY FUNCTION A, ASSOCIATED WITH THE
PRESSURE DISTRIBUTION OF MEAN CAMBER LINES
b4 Do Dy D3 D5 D, Ey F3
0.,0125 | ¥,53 | -0.53 | -2.50 | -3.17 | -5.49 | -3.51 | -3.62
.025 4,53 .88 = b7 -.91 | -2,17 | -1.07 | ~1.08
.05 4,53 1,89 .99 sl .22 .67 . T
.10 4,53 2.61 2.03 1.88 1.94 1.93 2.05
20 4,53 3.15 2.80 2.75 | 3.20 2.85 3.01
.30 4,53 3.k0 3.17 3.15 3.79 3.29 3.46
Jo | k.53 | 3.56 | 3.40 | 3.1 | k.18 | 3.57| 3.61
.50 4,53 3.68 3.57 3.61 L, L6 3.50 3.10
.60 L,53 3.61 3.21 2,95 | -1,03 2.35 2,14
.TO 4,53 3.19 2,07 1,31 ~.33 1.00 1.0k
'&) l"'53 2.’4'3 ’75 l05 . -.63 -O3 nl7
.90 4,53 1.34 -.05 -.26 -2 -.26 -.22
.90 k.53 .68 -.15 -.20 -.29 -.21 -.21
975 k.53 .33 -.08 - 1k -.20 -.15 -.15
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TABIE 6.- AUXILIARY FUNCTION Ag ASSOCIATED WITH THE

PRESSURE DISTRIBUTION OF MEAN CAMBER LINES

b 4 Do D1 D3 D5 Do E), F3
0.0125 | -6,31 | -6.13 | =-6.35 | -6.52 | -7.92 | -6.79 | =T7.07
025 | =5.28 | =5.18 | ~5.37 | =5.50 | -6.61 | =5.73 | -5.9%4
.05 h.25 | k.21 | <h.36 | -k, 46 | -5.25 | -L.63 | -k.79
.10 -3.17 | =3.19 | -3.29 | -3.36 | -3.78 | -3.46 | -3.55
.20 -1.99 | -2.05 | -2.09 | -2.10 | -2.00 | -2.11 | -2.11
.30 -1.21 | -1.27 | -1.22 | -1.18 -.52 1.09 -.99
9 iTo) -.58 -.58 -.43 -.31 1.26 -.07 .26
.50 0 1k .50 .76 o 1.33 1.k6
.60 .58 1,02 1.79 2.32 2.00 2.38 2.21
.70 1.21 1.90 2.63 2.87 1.02 2.30 2.36
.80 1.99 2,61 2,60 2,24 .52 2,00 1.97
.90 3.17 2.97 1.88 1.35 .21 1.25 1.31
.95 h,25 2,91 1.63 1.05 .10 .91 1.01
975 5.28 2.75 1.59 .9k .05 .82 .88
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TABLE T.~ PRESSURE DIFFERENCE DISTRIBUTION G FOR MEAN CAMBER LINES

LN NagNogNaglog] Vau-NHNO
AN\ O\ O\ OOV HOO
L . L L]

L ] L ] L ] L ] [ ] L ] L]
AF ottt ot

RRRRRRRYS8258S

D1

Do




TABLE 8.- ATRFOIL WITH UNTFORM DISTRIBUTION OF PRESSURRE

ar eu
TLE - I N
2N - T ( ___.)

x u Vl - u x
e=0,lle =0,2|le = O-3 e=0,lle=0,2|e = 003
0.00625|-0,9875| 1.393 | 1.671 | 1.898 | 0.993 | 1,089 | 1.20k [0.9875(0.99375
0125 | -.975 | 1.274 | 1.485 | 1L.670 955 982 | 1,033 | .975 | .9875
025 -,95 | 1,180 1§ 1,328 | 1.468 934 911 | .913 <95 975
0% | -.90 | 1,109 | 1.204 | 1.298 923 80 | .83 | .90 | .9%
075 | =.85 | 1.076 | 1.145 | 1.21k 919 .855 | .798 .85 925
.10 -.80 1.057 1.1062 1.163 LT BhT 1 .80 .80 .90
.15 -.TO 1,035 { 1.0 1,100 915 839 | .7 .T0 .85
«20 -.60 1,022 | 1,0k2 | 1,064 915 .835 | .753 60 .80
25 -.50 | 1,013 | 1.026 | 1.040 .91k .833 | . 748 50 75
.30 -.50 | 1.008 | 1,015 | 1.024 9Lk 831 | . 140 T0
Lo «.20 | 1,002 | 1.004 | 1,006 913 830 | .7hL 20 .60
0. |0 1.000 | 1.000 | 1.000 .913 830 | .0 |0 .50

TGET WL VOVMN

TG
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